1 99 8 Higher - Order Carmichael Numbers Everett

نویسنده

  • EVERETT W. HOWE
چکیده

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indicates that for every m there should be infinitely many Carmichael numbers of order m. The argument suggests a method for finding examples of higher-order Carmichael numbers; we use the method to provide examples of Carmichael numbers of order 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher - Order Carmichael Numbers Everett

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZ-algebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indic...

متن کامل

Higher-order Carmichael numbers

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indica...

متن کامل

A new algorithm for constructing large Carmichael numbers

We describe an algorithm for constructing Carmichael numbers N with a large number of prime factors p1, p2, . . . , pk. This algorithm starts with a given number Λ = lcm(p1 − 1, p2 − 1, . . . , pk − 1), representing the value of the Carmichael function λ(N). We found Carmichael numbers with up to 1101518 factors.

متن کامل

Constructing Carmichael numbers through improved subset-product algorithms

We have constructed a Carmichael number with 10,333,229,505 prime factors, and have also constructed Carmichael numbers with k prime factors for every k between 3 and 19,565,220. These computations are the product of implementations of two new algorithms for the subset product problem that exploit the non-uniform distribution of primes p with the property that p − 1 divides a highly composite Λ.

متن کامل

Counting Carmichael numbers with small seeds

Let As be the product of the first s primes, let Ps be the set of primes p for which p−1 divides As but p does not divide As, and let Cs be the set of Carmichael numbers n such that n is composed entirely of the primes in Ps and such that As divides n − 1. Erdős argued that, for any ε > 0 and all sufficiently large x (depending on the choice of ε), the set Cs contains more than x1−ε Carmichael ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007